145k views
0 votes
Evaluate integral_S integral (x - 2y + z) dS. S: z = 16, x^2 + y^2 le 1

1 Answer

4 votes


S is the disk of radius 1 parallel to the
x,y-plane and lying in the plane
z=16. Parameterize this surface by


\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+16\,\vec k

with
0\le u\le1 and
0\le v\le2\pi. Take the normal vector to
S to be


\vec r_u*\vec r_v=u\,\vec k

(the orientation doesn't matter because this is a scalar surface integral)

Then


\displaystyle\iint_S(x-2y+z)\,\mathrm dS=\iint_S(u\cos v-2u\sin v+16)\|u\,\vec k\|\,\mathrm du\,\mathrm dv


=\displaystyle\int_0^(2\pi)\int_0^1(u^2(\cos v-2\sin v)+16u)\,\mathrm du\,\mathrm dv=\boxed{16\pi}

User Ksogor
by
6.9k points

No related questions found