54.5k views
2 votes
Calculate the area of the surface S. S is the portion of the cone (x^2/4)+(y^2/4)=(z^2/9) that lies between z=4 and z=5

User Smerlung
by
4.7k points

1 Answer

3 votes

Parameterize
S by


\vec r(u,v)=\frac23u\cos v\,\vec\imath+\frac23u\sin v\,\vec\jmath+u\,\vec k

with
4\le u\le5 and
0\le v\le2\pi. Take the normal vector to
S to be


\vec r_u*\vec r_v=-\frac23u\cos v\,\vec\imath-\frac23u\sin v\,\vec\jmath+\frac49u\,\vec k

(orientation doesn't matter here)

Then the area of
S is


\displaystyle\iint_S\mathrm dA=\iint_S\|\vec r_u*\vec r_v\|\,\mathrm du\,\mathrm dv


=\displaystyle\frac{2√(13)}9\int_0^(2\pi)\int_4^5u\,\mathrm du\,\mathrm dv


=\displaystyle\frac{4√(13)\,\pi}9\int_4^5u\,\mathrm du=\boxed{2√(13)\,\pi}

User Salo
by
5.4k points