55.4k views
0 votes
A= [1, 3; 2, 1], B=[3, 6; -1, 1]. Find AB & BA if possible

1 Answer

4 votes

Answer:


AB\Rightarrow \quad \begin{bmatrix}0 & 9\\ 5 & 13\end{bmatrix}\\BA\Rightarrow \quad \begin{bmatrix}15 & 15\\ 1 & -2\end{bmatrix}

Explanation:

For two matrix P and Q, the product, say PQ is defined when:

The number of columns of P = The number of rows of Q

Since A is a 2×2 matrix and B is also a 2×2 matrix

Thus both AB and BA are possible.

So AB is:


AB\Rightarrow\begin{bmatrix}1 & 3\\ 2 & 1\end{bmatrix}\begin{bmatrix}3 & 6\\ -1 & 1\end{bmatrix}\\AB\Rightarrow\quad \begin{bmatrix}3* 1+3* (-1) & 6* 1+3* 1\\3* 2+1* (-1) & 6* 2+1* 1\end{bmatrix}\\AB\Rightarrow \quad \begin{bmatrix}0 & 9\\ 5 & 13\end{bmatrix}

BA is:


BA\Rightarrow\begin{bmatrix}3 & 6\\ -1 & 1\end{bmatrix}\begin{bmatrix}1 & 3\\ 2 & 1\end{bmatrix}\\BA\Rightarrow\quad \begin{bmatrix}3* 1+6* 2 & 3* 3+6* 1\\(-1)* 1+1* 2 & (-1)* 3+1* 1\end{bmatrix}\\BA\Rightarrow \quad \begin{bmatrix}15 & 15\\ 1 & -2\end{bmatrix}

User Sungam
by
8.6k points