55.5k views
0 votes
A= [1, 3; 2, 1], B=[3, 6; -1, 1]. Find AB & BA if possible

1 Answer

4 votes

Answer:


AB\Rightarrow \quad \begin{bmatrix}0 & 9\\ 5 & 13\end{bmatrix}\\BA\Rightarrow \quad \begin{bmatrix}15 & 15\\ 1 & -2\end{bmatrix}

Explanation:

For two matrix P and Q, the product, say PQ is defined when:

The number of columns of P = The number of rows of Q

Since A is a 2×2 matrix and B is also a 2×2 matrix

Thus both AB and BA are possible.

So AB is:


AB\Rightarrow\begin{bmatrix}1 & 3\\ 2 & 1\end{bmatrix}\begin{bmatrix}3 & 6\\ -1 & 1\end{bmatrix}\\AB\Rightarrow\quad \begin{bmatrix}3* 1+3* (-1) & 6* 1+3* 1\\3* 2+1* (-1) & 6* 2+1* 1\end{bmatrix}\\AB\Rightarrow \quad \begin{bmatrix}0 & 9\\ 5 & 13\end{bmatrix}

BA is:


BA\Rightarrow\begin{bmatrix}3 & 6\\ -1 & 1\end{bmatrix}\begin{bmatrix}1 & 3\\ 2 & 1\end{bmatrix}\\BA\Rightarrow\quad \begin{bmatrix}3* 1+6* 2 & 3* 3+6* 1\\(-1)* 1+1* 2 & (-1)* 3+1* 1\end{bmatrix}\\BA\Rightarrow \quad \begin{bmatrix}15 & 15\\ 1 & -2\end{bmatrix}

User Sungam
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories