The amount of salt in the tank changes with rate according to
![Q'(t)=\left(1(\rm lb)/(\rm gal)\right)\left(4(\rm gal)/(\rm min)\right)-\left((Q(t))/(300+(4-1)t)(\rm lb)/(\rm gal)\right)\left(1(\rm gal)/(\rm min)\right)](https://img.qammunity.org/2020/formulas/mathematics/college/ab32ld6y4ns2q01uqd1wfsyxa3bzoeumcc.png)
![\implies Q'+\frac Q{300+3t}=4](https://img.qammunity.org/2020/formulas/mathematics/college/utu202ysvbvxhx48zm3pfbt8y5c1txpwyw.png)
which is a linear ODE in
. Multiplying both sides by
gives
![(300+3t)^(1/3)Q'+(300+3t)^(-2/3)Q=4(300+3t)^(1/3)](https://img.qammunity.org/2020/formulas/mathematics/college/8jpntooav19992ch0xguv1dfz851vv4eo4.png)
so that the left side condenses into the derivative of a product,
![\big((300+3t)^(1/3)Q\big)'=4(300+3t)^(1/3)](https://img.qammunity.org/2020/formulas/mathematics/college/r4p3wa0e3fcbxea2i2b3dwbwpescc20zeq.png)
Integrate both sides and solve for
to get
![(300+3t)^(1/3)Q=(300+3t)^(4/3)+C](https://img.qammunity.org/2020/formulas/mathematics/college/jezh25xnne03uaocpyfs82jxf5zrrn6aj9.png)
![\implies Q(t)=300+3t+C(300+3t)^(-1/3)](https://img.qammunity.org/2020/formulas/mathematics/college/iwgsuv8av95zimz76jj7eqks496s6bvr3l.png)
Given that
, we find
![100=300+C\cdot300^(-1/3)\implies C=-200\cdot300^(1/3)](https://img.qammunity.org/2020/formulas/mathematics/college/ba5dc9cbeuy2vg9p480oxfuogxhcjrf3f4.png)
and we get the particular solution
![Q(t)=300+3t-200\cdot300^(1/3)(300+3t)^(-1/3)](https://img.qammunity.org/2020/formulas/mathematics/college/85j05tfcy1d4v624ft9pnhp5gprmm8ihlk.png)
![\boxed{Q(t)=300+3t-2\cdot100^(4/3)(100+t)^(-1/3)}](https://img.qammunity.org/2020/formulas/mathematics/college/gth01p1dhfkg6a923imq9l8endt8xy3w85.png)