36.2k views
3 votes
Solve the initial value problem (explicit solution). y y' - cot t = 0 y(pi/2) = -1

User Punitcse
by
5.6k points

1 Answer

4 votes

This ODE is separable:


yy'-\cot t=0\implies y\,\mathrm dy=\cot t\,\mathrm dt

Integrate both sides to get


\frac12y^2=\ln|\sin t|+C

Given that
y\left(\frac\pi2\right)=-1, we get


\frac12(-1)^2=\ln|\sin\frac\pi2\right|+C\implies C=\frac12

Then


\frac12y^2=\ln|\sin t|+\frac12


y^2=2\ln|\sin t|+1


y^2=\ln\sin^2t+1


\implies\boxed{y(t)=\pm√(\ln\sin^2t+1)

User Dieseltime
by
6.5k points