38.3k views
3 votes
Find a compact form for generating function of the sequence 1, 8, 27,.........., k^3,.........

User EranGrin
by
5.8k points

1 Answer

3 votes

The generating function is
f(x) where


f(x)=\displaystyle\sum_(k=0)^\infty a_kx^k

with
a_k=k^3 for
k\ge0.

Recall that for
|x|<1, we have


g(x)=\frac1{1-x}=\displaystyle\sum_(k=0)^\infty x^k

Taking the derivative gives


g'(x)=\frac1{(1-x)^2}=\displaystyle\sum_(k=1)^\infty kx^(k-1)=\sum_(k=0)^\infty(k+1)x^k


\implies g'(x)-g(x)=\frac x{(1-x)^2}=\displaystyle\sum_(k=0)^\infty kx^k

Taking the derivative again, we get


g''(x)=\frac2{(1-x)^3}=\displaystyle\sum_(k=2)^\infty k(k-1)x^(k-2)=\sum_(k=0)^\infty(k^2+3k+2)x^k


\implies g''(x)-3g'(x)+g(x)=(x^2+x)/((1-x)^3)=\displaystyle\sum_(k=0)^\infty k^2x^k

Take the derivative one last time to get


g'''(x)=\frac6{(1-x)^4}=\displaystyle\sum_(k=3)^\infty k(k-1)(k-2)x^(k-3)=\sum_(k=0)^\infty(k^3+6k^2+11k+6)x^k


\implies g'''(x)-6g''(x)+7g'(x)-g(x)=(x^3+4x^2+x)/((1-x)^4)=\displaystyle\sum_(k=0)^\infty k^3x^k

So the generating function is


\boxed{f(x)=(x^3+4x^2+x)/((1-x)^4)}

User Rayshon
by
5.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.