235k views
2 votes
Solve one of the following non-homogeneous Cauchy-Euler equations using whatever technique you prefer. Put an "X" through whichever equations you would not put an "X" through either equation, I will grade whichever one I prefer. a) x^2 y" + 10xy' + 8y = x^2 b) x^2 y" - 3xy' + 13y = 4 + 3x

User Daanzel
by
5.5k points

1 Answer

3 votes

Answer:

a.
y(x)=C_1x^(-1)+C_2x^(-8)+(1)/(30)x^2

b.
y(x)=x^2(C_1cos (3lnx)+C_2sin(3lnx))+(4)/(13)+(3)/(10)x

Explanation:

1.
x^2y''+10xy'+8y =x^2

It is Cauchy-Euler equation where
x=e^t

Then auxillary equation


D'(D'-1)+10D'+8=0


D'^2+9D'+8=0


(D'+1)(D'+8)=0

D'=-1 and D'=-8

Hence, C.F=
C_1e^(-t)+C_2e^(-8t)

C.F=
C_1(1)/(x)+C_2(1)/(x^8)

P.I=
(e^(2t))/(D'^2+9D'+8)=(e^(2t))/(4+18+8)

Where D'=2


P.I=(1)/(30)e^(2t)=(1)/(30)x^2


y(x)=C_1x^(-1)+C_2x^(-8)+(1)/(30)x^2

b.
x^2y''-3xy'+13y=4+3x

Same method apply

Auxillary equation


D'^2-D'-3D'+13=0


D'^2-4D'+13=0


D'=2\pm3i

C.F=
e^(2t)(C_1cos 3t+C_2sin 3t)

C.F=
x^2(C_1cos (3lnx)+C_2sin(3lnx))


e^t=x

P.I=
(4e^(0t))/(D'^2-4D'+13)+3(e^t)/(D'^2-4D'+13)

Substitute D'=0 where
e^(0t) and D'=1 where
e^t

P.I=
(4)/(13)+(3)/(10)e^t

P.I=
(4)/(13)+(3)/(10)x


y(x)=C.F+P.I=x^2(C_1cos (3lnx)+C_2sin(3lnx))+(4)/(13)+(3)/(10)x

User Marco Leung
by
6.0k points