69.6k views
4 votes
Let u and upsilon be vectors in an inner product space. Show that ||u + upsilon||^2 + ||u - upsilon||^2 = 2 (||u||^2 + ||upsilon||^2).

1 Answer

4 votes

Answer with Step-by-step explanation:

We are given that u and upsilon be vectors in an inner product space .

We have to show that
\left \| u+upsilon \right \|^2+\left \|u-upsilon \right \|^2=2(\left \| u\right \|^2+\left \| upsilon \right \|^2)

We know that


\left \| u+upsilon \right \|^2=<u+upsilon,u+upsilon>= \left \| u \right \|^2+ \left \| upsilon \right \|^2+2 \left \| u\right \| \left \| upsilon \right \|


\left \| u+upsilon \right \|^2=< u-upsilon,u-upsilon>=\left \| u \right \|^2+ \left \| upsilon \right \|^2-2 \left \|u \right \| \left \| upsilon \right \|

Left hand side

Using above identities


\left \| u+upsilon \right \|^2+\left \| u-upsilon \right \|^2


=<u+upsilo,u+upsilon >+< u-upsilon,u-upsilon>


=\left \| u \right \|^2+ \left \| upsilon \right \|^2+2 \left \|u \right \| \left \| upsilon \right \|+\left \| u \right \|^2+ \left \| upsilon \right \|^2-2 \left \|u \right \| \left \| upsilon \right \|


=2\left \| u \right \|^2+2\left \| upsilon \right \|^2


=2(\left \|u \right \|^2+\left \| upsilon \right \|^2

Hence, proved.

User Sebdalgarno
by
5.1k points