18.4k views
5 votes
A) Find a particular solution to y" + 2y = e^3 + x^3. b) Find the general solution.

User Joesdiner
by
7.7k points

1 Answer

5 votes

Answer:

a.P.I=
(e^(3x))/(11)+(1)/(2)(x^3-3x)

b.G.S=
C_1Cos \sqrt2 x+C_2 Sin\sqrt2 x+(1)/(11)e^(3x)+(1)/(2)(x^3-3x}

Explanation:

We are given that a linear differential equation


y''+2y=e^(3x)+x^3

We have to find the particular solution

P.I=
(e^(3x))/(D^2+2)+(x^3)/(D^2+2)

P.I=
(e^(3x))/(3^2+2)+(1)/(2) x^3(1+(D^2)/(2))^(-2)

P.I=
(e^(3x))/(11)+(1-2(D^2)/(4)+3(D^4)/(16)+...)/(2)x^3

P.I=
(e^(3x))/(11)+(x^3-2(\cdot3\cdot 2x)/(4))/(2)+0} (higher order terms can be neglected

P.I=
(e^(3x))/(11)+(1)/(2)(x^3-3x)

b.Characteristics equation


D^2+2=0


D=\pm\sqrt2 i

C.F=
C_1cos \sqrt2x+C_2 sin\sqrt2 x

G.S=C.F+P.I

G.S=
C_1Cos \sqrt2 x+C_2 Sin\sqrt2 x+(1)/(11)e^(3x)+(1)/(2)(x^3-3x)

User Ozzie
by
7.8k points

No related questions found