88.2k views
2 votes
Let an be an arithmetic progression with a4 + a7 + a10 = 17 and a4 + a5 +···+ a13 + a14 = 77. If ak = 13, then k =?

User Zero Fiber
by
5.8k points

1 Answer

5 votes

Answer:

The value of k is 18.

Explanation:

Here, the AP is,


a_1, a_2,........a_n

Let a be the first term and d is the common difference,

So the arithmetic sequence would be,


a, a+d, a+2d, ..........a+(n-1)d

Given,


a_4 + a_7 + a_10 = 17


\implies a+3d+a+6d+a+9d=17


3a+18d=17------(1)

Now,
a_4 + a_5 +.......+ a_(13)+ a_(14)= 77


\implies (11)/(2)(2(a+3d)+(11-1)d)=77


11(2a+6d+10d)=154


22a+176d=154-----(2)

22 × equation (1) - 3 × equation (2),

We get,


396d-528d = 374 - 462


-132d=-88


\implies d=(88)/(132)=(2)/(3)

From equation (1),


3a+(36)/(3)=17


3a+12=17


3a=5


a=(5)/(3)

Here,


a_k=13


a+(k-1)d=13


(k-1)d=13-a


k-1=(13-a)/(d)


k=(13-a)/(d)+1

By substituting the value,


k=(13-(5)/(3))/((2)/(3))+1=(39-5)/(2)+1=17+1=18

Hence, the value of k is 18.

User Satoukum
by
6.1k points