Answer:
![T^(-1)(x_1,x_2)=((x_1+x_2)/(2),(x_2-x_1)/(2))](https://img.qammunity.org/2020/formulas/mathematics/college/w6ittt73o0ptmtuqu1ulh8m64i43b1p0l6.png)
Explanation:
Given:
Linear transformation,
defined as
![T(x_1,x_2)=(x_1-x_2,x_1+x_2)](https://img.qammunity.org/2020/formulas/mathematics/college/kne5iqmdw6pbdmykzgw4slts4zd6vmmwgw.png)
To Show: T is invertible
To find:
![T^(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/26fpeui9i1z6lj30qxdrqitmea9x6wippb.png)
We know that Standard Basis of R² is
![\{e_1=(1,0)\:,\:e_2=(0,1)\}](https://img.qammunity.org/2020/formulas/mathematics/college/3bfmqy828hg6ecgx0ubmagmossbkba0qrh.png)
![T(e_1)=T(1,0)=(1,1)=1e_1+1e_2](https://img.qammunity.org/2020/formulas/mathematics/college/o7sgjop22vfzc23aa2pow0u9sp02hol12c.png)
![T(e_2)=T(0,1)=(-1,1)=-1e_1+1e_2](https://img.qammunity.org/2020/formulas/mathematics/college/2qtkod6mao9c3sdf5jrmz17si22lffbv7m.png)
So, The matrix representation of T is
![\begin{bmatrix}1&1\\-1&1\end{bmatrix}^T=\begin{bmatrix}1&-1\\1&1\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/college/t8ioo4arlpgzsb3rswq7e1yavpg2njz0du.png)
Now, Determinant of T = 1 - (-1) = 1 + 1 = 2 ≠ 0
⇒ Matrix Representation of T is Invertible matrix.
⇒ T is invertible Linear Transformation.
Hence Proved.
let,
![x_1-x_2=u.........................(1)](https://img.qammunity.org/2020/formulas/mathematics/college/ea7jgge0w9z03ifyew655qfl7oa6006jco.png)
![x_1+x_2=v.........................(2)](https://img.qammunity.org/2020/formulas/mathematics/college/xnbu3g0glsr07h9ftc46k2ewqjxjv28hwq.png)
Add (1) and (2),
![2x_1=u+v](https://img.qammunity.org/2020/formulas/mathematics/college/yzfxt9ghtyfv89fhk9n3bvoh1h6xnhsh7p.png)
![x_1=(u+v)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/tm5umx3vkd7wtqpkf1ec1tjulj8jy97s1r.png)
Putting this value in (1),
![(u+v)/(2)-x_2=u](https://img.qammunity.org/2020/formulas/mathematics/college/25aodpvws6fyem8hfutgppry7pgrtx7svl.png)
![x_2=(u+v)/(2)-u](https://img.qammunity.org/2020/formulas/mathematics/college/yemin8kugf2rmblde8qm53r76eko2h6f0p.png)
![x_2=(u+v-2u)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/vs5ruytyk0vmbpa1xi6fxagyfhpsqe290e.png)
![x_2=(v-u)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/furo3vj9isg86pno8hhgmrzpr1uxdnvlrf.png)
Now,
![T(x_1,x_2)=(x_1-x_2,x_1+x_2)=(u,v)](https://img.qammunity.org/2020/formulas/mathematics/college/a0i35rmh4vwaetpd4cipei8o16im2z6d95.png)
![\implies(x_1,x_2)=T^(-1)(u,v)](https://img.qammunity.org/2020/formulas/mathematics/college/5w1pplpcomp1wz8mq6g4kl6qwv2nm60up8.png)
![\implies T^(-1)(u,v)=((u+v)/(2),(v-u)/(2))](https://img.qammunity.org/2020/formulas/mathematics/college/gyqc2wro7r3360mzggrte392by86t6jfe6.png)
![\implies T^(-1)(x_1,x_2)=((x_1+x_2)/(2),(x_2-x_1)/(2))](https://img.qammunity.org/2020/formulas/mathematics/college/469ipgiwg1395lcg8nb5cwcrte8vsg9ypq.png)
Therefore,
![T^(-1)(x_1,x_2)=((x_1+x_2)/(2),(x_2-x_1)/(2))](https://img.qammunity.org/2020/formulas/mathematics/college/w6ittt73o0ptmtuqu1ulh8m64i43b1p0l6.png)