Answer with explanation:
It is given that:
f: R → R is a continuous function such that:
∀ x,y ∈ R
Now, let us assume f(1)=k
Also,
( Since,
f(0)=f(0+0)
i.e.
f(0)=f(0)+f(0)
By using property (1)
Also,
f(0)=2f(0)
i.e.
2f(0)-f(0)=0
i.e.
f(0)=0 )
Also,
i.e.
f(2)=f(1)+f(1) ( By using property (1) )
i.e.
f(2)=2f(1)
i.e.
f(2)=2k
f(m)=f(1+1+1+...+1)
i.e.
f(m)=f(1)+f(1)+f(1)+.......+f(1) (m times)
i.e.
f(m)=mf(1)
i.e.
f(m)=mk
Now,
![f(1)=f((1)/(n)+(1)/(n)+.......+(1)/(n))=f((1)/(n))+f((1)/(n))+....+f((1)/(n))\\\\\\i.e.\\\\\\f((1)/(n)+(1)/(n)+.......+(1)/(n))=nf((1)/(n))=f(1)=k\\\\\\i.e.\\\\\\f((1)/(n))=k\cdot (1)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/r1e32ne218j8o46vkh2psvvkgfo05q3k7v.png)
Also,
i.e.
![x=(p)/(q)](https://img.qammunity.org/2020/formulas/mathematics/college/kbfwyls89mlla6mdv874a0bsmonxrtnwpo.png)
Then,
![f((p)/(q))=f((1)/(q))+f((1)/(q))+.....+f((1)/(q))=pf((1)/(q))\\\\i.e.\\\\f((p)/(q))=p(k)/(q)\\\\i.e.\\\\f((p)/(q))=k(p)/(q)\\\\i.e.\\\\f(x)=kx\ for\ all\ x\ belongs\ to\ Q](https://img.qammunity.org/2020/formulas/mathematics/college/7j6wso3syzmj6zipzaevulgrpuzhm6dmwe.png)
(
Now, as we know that:
Q is dense in R.
so Э x∈ Q' such that Э a seq
belonging to Q such that:
)
Now, we know that: Q'=R
This means that:
Э α ∈ R
such that Э sequence
such that:
![a_n\ belongs\ to\ Q](https://img.qammunity.org/2020/formulas/mathematics/college/e40lmw0aek34ieki78wzwb912vbb6l8548.png)
and
![a_n\to \alpha](https://img.qammunity.org/2020/formulas/mathematics/college/u84gbg6em5qlynipjikgygbn0v09d28cnx.png)
![f(a_n)=ka_n](https://img.qammunity.org/2020/formulas/mathematics/college/5jiptaf9y3wwr575i1ci1b1tjbzg5fg1jm.png)
( since
belongs to Q )
Let f is continuous at x=α
This means that:
![f(a_n)\to f(\alpha)\\\\i.e.\\\\k\cdot a_n\to f(\alpha)\\\\Also\\\\k\cdot a_n\to k\alpha](https://img.qammunity.org/2020/formulas/mathematics/college/8eqcfy9ui31zb3eb8zjk0qvq7zvr6h9ov1.png)
This means that:
![f(\alpha)=k\alpha](https://img.qammunity.org/2020/formulas/mathematics/college/vhbi5zvphlpt419k3ms8fvd0acrz37cfq5.png)
This means that:
f(x)=kx for every x∈ R