28.7k views
0 votes
Express the system as AX = B; then solve using matrix inverses

1. 3x – 5y = 2 –x + 2y = 0

2. x + y – z = 2 x + z = 7 2x + y + z = 13

User Chopss
by
8.6k points

1 Answer

1 vote

Answer with explanation:

1. The given equations are

3x -5 y=2

-x+2 y= 0

The matrix in the form of , AX=B, is


A=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right] ,\\\\ X=\left[\begin{array}{c}x&y\end{array}\right],\\\\B=\left[\begin{array}{c}2&0\end{array}\right]


\rightarrow X=A^(-1)B\\\\\rightarrow X=(Adj.A)/(|A|)* B

Adj.A=Transpose of cofactor of Matrix A


Adj.A=\left[\begin{array}{cc}2&1\\5&3\end{array}\right] ,\\\\ |A|=6-5\\\\|A|=1\\\\\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{cc}2&5\\1&3\end{array}\right] * \left[\begin{array}{c}2&0\end{array}\right]\\\\x=4, y=2

2.

The given equations are

x+y-z=2

x+z=7

2 x +y+z=13

The matrix in the form of , AX=B, is


A=\left[\begin{array}{ccc}1&1&-1\\1&0&1\\2&1&1\end{array}\right]\\\\ X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]\\\\B= \left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\\rightarrow X=A^(-1)B\\\\\rightarrow X=(Adj.A)/(|A|)* B\\\\a_(11)=-1,a_(12)=1,a_(13)=1,a_(21)=-2,a_(22)=3,a_(23)=1,a_(31)=1,a_(32)=-2,a_(33)=-1\\\\|A|=1*(0-1)-1*(1-2)-1*(1-0)\\\\=-1+1-1\\\\|A|=-1\\\\Adj.A=\left[\begin{array}{ccc}-1&-2&1\\1&3&-2\\1&1&-1\end{array}\right]


(Adj.A)/(|A|)=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\\\\X=A^(-1)B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]*\left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\x=3,y=3,z=4

User Tarun Dugar
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories