Answer:
![v(t)=-(1)/(t+1) +1](https://img.qammunity.org/2020/formulas/mathematics/college/9xuwvbk96hfq2u8bzksiy6ld52wf88qrts.png)
![x(t)=-ln(t+1)+t+1](https://img.qammunity.org/2020/formulas/mathematics/college/6h5525j5ioxh4hnk20sf2htrzhxlkuxzuj.png)
Explanation:
Integrate the function of the acceleration to find the function of the velocity
![v(t)=\int {(1)/((t+1)^2) } \, dt= \int {(t+1)^(-2)} \, dt =((t+1)^(-2+1))/(-2+1) +c_1\\v(t)=((t+1)^(-1))/(-1)+c_1 =-(1)/(t+1) +c_1](https://img.qammunity.org/2020/formulas/mathematics/college/rzihmncyfbqj0gj3pn3zie23rebenra6ef.png)
Use the initial condition
to find the value of the constant
:
![v(0)=-(1)/((0)+1) +c_1=0\\-1 +c_1=0\\c_1=1\\\therefore v(t)=-(1)/(t+1) +1](https://img.qammunity.org/2020/formulas/mathematics/college/9nly4juo57e27wc2h0i3uuceiaz77cciy6.png)
Integrate the function of the velocity to find the function of the position:
![x(t)=\int {-(1)/(t+1) +1} \, dt=-\int {(1)/(t+1) } \, dt+ \int {1} } \, dt\\x(t)=-ln(t+1)+t+c_2](https://img.qammunity.org/2020/formulas/mathematics/college/93alslh4066fqbqeywp6xlnumtqqncp3m7.png)
Use the initial condition
to find the value of the constant
:
![x(0)=-ln(0+1)+0+c_2=1\\-ln(1)+c_2=1\\0+c_2=1\\c_2=1\\\therefore x(t)=-ln(t+1)+t+1](https://img.qammunity.org/2020/formulas/mathematics/college/f51pc6gzme3xgmxywg0w1lqhp0xluqvtqa.png)