Answer:
.
Explanation:
Let's find a particular solution
:
, so
![abe^(bx) + ae^(bx) = e^(2x)](https://img.qammunity.org/2020/formulas/mathematics/college/weqd51atuhtrlescxyncbcu1dqlt82mis1.png)
, then, b=2 and 3a = 1, so a= 1/3.
Our particular solution is
. Now, we are going to find the solution of the homogeneus equation with constants coefficients.
Let y =
![e^(\lambda x)](https://img.qammunity.org/2020/formulas/mathematics/college/66fi97iylcf7i7eyoi666q2qeredsustqe.png)
, so
![\lambda e^(\lambda x)+ e^(\lambda x) = 0](https://img.qammunity.org/2020/formulas/mathematics/college/6d4hk2sgzl4u8guw8sjw6kikwq34lpgc9w.png)
![e^(\lambda x)(\lambda + 1) = 0](https://img.qammunity.org/2020/formulas/mathematics/college/uwd2m5gi52eya8drsfyh29xzojrwdlbzug.png)
. Then
and the solution is
. Now, we use the initial condition to find C:
![y(0) = (1)/(3)e^(0) + Ce^(0) = (1)/(3) + C = 2](https://img.qammunity.org/2020/formulas/mathematics/college/vke3fysv6vwmpz6ves8so80ro1lbrvc4qi.png)
The final result is
.