55.8k views
2 votes
Sin(x) + sin(3x) = 4 sin(x) cos^2(x)
Prove the identity.

User Dabo
by
8.5k points

1 Answer

4 votes


\bf \textit{Sum to Product Identities} \\\\ sin(\alpha)+sin(\beta)=2sin\left(\cfrac{\alpha+\beta}{2}\right)cos\left(\cfrac{\alpha-\beta}{2}\right)\leftarrow \textit{we'll use this one} \\\\\\ sin(\alpha)-sin(\beta)=2cos\left(\cfrac{\alpha+\beta}{2}\right)sin\left(\cfrac{\alpha-\beta}{2}\right) \\\\\\ \stackrel{\textit{symmetry identity}}{cos(-\theta )=cos(\theta )} \\\\[-0.35em] \rule{34em}{0.25pt}


\bf sin(x)+sin(3x)=\underline{4sin(x)cos^2(x)} \\\\[-0.35em] ~\dotfill\\\\ sin(x)+sin(3x)\implies 2sin\left( \cfrac{x+3x}{2} \right)cos\left( \cfrac{x-3x}{2} \right) \\\\\\ 2sin\left( \cfrac{4x}{2} \right)cos\left( \cfrac{-2x}{2} \right)\implies 2sin(2x)cos(-x)\implies 2\boxed{sin(2x)} cos(x) \\\\\\ 2\boxed{2sin(x)cos(x)} cos(x)\implies \underline{4sin(x)cos^2(x)}

User Sonrobby
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories