Answer:
x=y2/8+y/2+9/2
Explanation:
Given:
directrix: x=2
focus = (6,-2)
Standard equation of parabola is given by:
(y - k)2 = 4p (x - h)
where
directrix : x=h-p
focus=(h + p, k)
Now comparing the give value with above:
(h + p, k)= (6,-2)
k=-2
h+p=6
h=6-p
Also
directrix: x=h-p
h-p=2
Putting value of h=6-p in above
6-p-p=2
6-2p=2
-2p=2-6
-2p=-4
p=-4/-2
p=2
Putting p=2 in h-p=2
h=2+p
h=2+2
h=4
Putting k=-2, p=2, h=4 in standard equation of parabola we get:
(y - k)2 = 4p (x - h)
(y-(-2))^2 = 4(2) (x - 4)
(y+2)^2 = 8 (x - 4)
y2+4y+4=8x-32
y2+4y+4+32=8x
x=y2/8+4y/8+36/8
x=y2/8+y/2+9/2!