Answer:
2
Explanation:
So I'm going to use vieta's formula.
Let u and v the zeros of the given quadratic in ax^2+bx+c form.
By vieta's formula:
1) u+v=-b/a
2) uv=c/a
We are also given not by the formula but by this problem:
3) u+v=uv
If we plug 1) and 2) into 3) we get:
-b/a=c/a
Multiply both sides by a:
-b=c
Here we have:
a=3
b=-(3k-2)
c=-(k-6)
So we are solving
-b=c for k:
3k-2=-(k-6)
Distribute:
3k-2=-k+6
Add k on both sides:
4k-2=6
Add 2 on both side:
4k=8
Divide both sides by 4:
k=2
Let's check:
:
![3x^2-(3\cdot 2-2)x-(2-6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5kmyyjfh0fkaeltgwxgu9cg7a8537mkng7.png)
![3x^2-4x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l2l88a8wnyjx75a2vlj9ptkz8fn3mm0wcp.png)
I'm going to solve
for x using the quadratic formula:
![(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1xwrimjvynq066q3z5j8tj1ranutxmi4gc.png)
![(4\pm √((-4)^2-4(3)(4)))/(2(3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/khply7b1y1x7bb0tfbegiq97litr7d4vd2.png)
![(4\pm √(16-16(3)))/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a6k3rh4ggse6u9m069s0n4o7iaeh586mt1.png)
![(4\pm √(16)√(1-(3)))/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gs1gdrs5uvrsnffpg4x0svn7d35yjc1m89.png)
![(4\pm 4√(-2))/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nrackilwkts3telnbyszgk7v1ry3r6xs7o.png)
![(2\pm 2√(-2))/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o37els6o38xmuv3yu8vt4n57kizf0hxykz.png)
![(2\pm 2i√(2))/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkq4so0sm0bb7gelei0a8pa0w1bv7r0lav.png)
Let's see if uv=u+v holds.
![uv=(2+2i√(2))/(3) \cdot (2-2i√(2))/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zh62zgt1o4m66i8ewqeuvpq6s53rcmohcn.png)
Keep in mind you are multiplying conjugates:
![uv=(1)/(9)(4-4i^2(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/axktn83w053l6g916yqzwutyo2n8loshoj.png)
![uv=(1)/(9)(4+4(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/29cx7zuycxouk0eg58zp4ox5bqj2bt5xdv.png)
![uv=(12)/(9)=(4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9x89zpiswz4lfo37n4t8m1p2p9ynx75syo.png)
Let's see what u+v is now:
![u+v=(2+2i√(2))/(3)+(2-2i√(2))/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u38sbwie5cwu0ns6qzh8h5x9q2n0qt2cdg.png)
![u+v=(2)/(3)+(2)/(3)=(4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w7s0ywxsx9a4bk336kihl6o4c6bocsh2f0.png)
We have confirmed uv=u+v for k=2.