A line has an equation of a form,
![y=ax+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/pqmc9ex2vfu8vytlvrx6kksbnmrule6iim.png)
From a graph we can pick two points on the line, say A and B where,
![A(x_1,y_2),B(x_2,y_2)\longrightarrow A(0,0),B(1,-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/r7ekbf5tx1sg0ffpcorpok8ex6pohn0ex9.png)
Using their coordinates we are able to calculate slope.
![a=\frac{\Delta{y}}{\Delta{x}}=(y_2-y_1)/(x_2-x_1)=(-1-0)/(1-0)=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/il1fdt8yhov2ksl49nnuahablm3fmd77p7.png)
Hence,
![y=-1\cdot x+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/o8jpmx4x8vfin7t6bock1co17mp4kujubb.png)
The x and y terms can be replaced with coordinates of one point either A or B. I'll pick A.
![0=-1\cdot0+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/of70ly9mv8j4tjib2r2ng6eeuuoaj878jq.png)
And now solve for b.
![0=0+b\Longrightarrow b=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/6yf2tg3jy0i6hzrzecxtbci7spavzbp9zs.png)
Hence,
![y=-1\cdot x+0](https://img.qammunity.org/2020/formulas/mathematics/high-school/m3qygja99hysq10ajgelk3ulcmv2hc35qg.png)
Simply,
![\boxed{y=-x}](https://img.qammunity.org/2020/formulas/mathematics/high-school/k9qihua2xxuf1zd2xo3odkbabqwb46qawr.png)
Hope this helps.
r3t40