Answer:
6,-4,3
Explanation:
We are given that a polynomial
![x^3+72=5x^+18x](https://img.qammunity.org/2020/formulas/mathematics/college/9mnpndnr0lvj4ivrn7ilmrwlgy6y2ef5rz.png)
![x^3-5x^2-18x+72=0](https://img.qammunity.org/2020/formulas/mathematics/college/sn48tlyw405app6uv77mq5e2ipia87egis.png)
We have to find the original roots of polynomial equation
Substitute -6 in the polynomial
Then , we get
![(-6)^3-5(-6)^2-18(-6)+72](https://img.qammunity.org/2020/formulas/mathematics/college/2s1unz61yvf0gnzv9g1a7hn9d5sj8epe3l.png)
![-216-180+108+72\\eq 0](https://img.qammunity.org/2020/formulas/mathematics/college/2njnd97xpzr9hm9i0fs6git3aqya0r34l2.png)
Therefore, it is not roots of the given polynomial.
Substitute x=0 then we get
![72\\eq 0](https://img.qammunity.org/2020/formulas/mathematics/college/wdlv7kkquh3l4zpncm841p5j1t2adpzs0c.png)
Hence, o is not a root of given polynomial.
Substitute x=6 then we get
![(6)^3-5(6)^2-18(6)+72](https://img.qammunity.org/2020/formulas/mathematics/college/6lcdar5gby1ye178t5z4w3cxzfmrfk8gxj.png)
![216-180-108+72=288-288=0](https://img.qammunity.org/2020/formulas/mathematics/college/vdelpdzwok49oxlborksmp2pyksufb9gy3.png)
Hence, 6 is a root of given polynomial because it satisfied the given polynomial.
Substitute x=-4 then we get
![(-4)^3-5(-4)^2-18(-4)+72](https://img.qammunity.org/2020/formulas/mathematics/college/o3aqpu4tc2efgywnah6g6ruetxv02nje9f.png)
![-64-80+72+72=-144+144=0](https://img.qammunity.org/2020/formulas/mathematics/college/9885oohu47swc6j0tq0b5gwxk9o4jqd6lm.png)
Hence, -4 is a root of given polynomial .
Substitute x=3 then we get
![(3)^3-5(3)^2-18(3)+72](https://img.qammunity.org/2020/formulas/mathematics/college/7006mxk9ikm7zl99d43xatmz58ryn5x3gt.png)
![27-45-54+72](https://img.qammunity.org/2020/formulas/mathematics/college/13jguf3292m7lvg1cxydews3wb1jjuoglb.png)
![99-99=0](https://img.qammunity.org/2020/formulas/mathematics/college/wd10dwjiq7qtkxzjn9b5mchkivdfovxo4f.png)
Hence, 3 is a root of given polynomial.
Substitute x=8 then we get
![(8)^3-5(8)^2-18(8)+72](https://img.qammunity.org/2020/formulas/mathematics/college/czwausry7coxerwtzg592ykyyg9ufw00ah.png)
![512-320-144+72\\eq 0](https://img.qammunity.org/2020/formulas/mathematics/college/m10ljb12w3flye5f9iv4u1iv5btq0ade2d.png)
Hence, 8 is not a roots of given polynomial.