Answer:
Kernel is the set of all elements of the form
![a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5](https://img.qammunity.org/2020/formulas/mathematics/college/t4piq0dcpg78tumwhcig10ngrhy37ao387.png)
Explanation:
We are given that a linear transformation
T:
![P_5\rightarrow R](https://img.qammunity.org/2020/formulas/mathematics/college/89x1lqh6jaqv18lvcrtuahbey81k9s01ze.png)
![T(a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5)=a_0](https://img.qammunity.org/2020/formulas/mathematics/college/4po016jej4wzm29t5hsuhu4xhhrnih63ik.png)
We have to find the kernel of the linear transformation if all real numbers are solutions
Kernel: It is defined as set of elements whose image is zero.
i.e T(x)=0 for any x belongs to domain.
To find the kernel of given linear transformation we substituting the given function is equal to zero
![T(a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5)=0](https://img.qammunity.org/2020/formulas/mathematics/college/s7gu21bbubvm4c09ea3vn4lcp1itt453u0.png)
![a_0=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/xt3hj6bgjebw95obtoqywrmy84xj9k54vv.png)
Therefore, the basis of kernel of given linear transformation is
K=
![\left\{x,x^2,x^3,x^4,x^5\right\}](https://img.qammunity.org/2020/formulas/mathematics/college/xprq42kbvdm7q58hg0badjiyp045qn5091.png)
Kernel is the set of all elements of the form
![a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5](https://img.qammunity.org/2020/formulas/mathematics/college/t4piq0dcpg78tumwhcig10ngrhy37ao387.png)