Answer:
-1 is the inverse of 16 modulo 17.
Explanation:
To find : An inverse of 16 modulo 17 i.e.
?
Solution :
First we find the GCD of (17,16) using Euclid's algorithm,
![17=16* 1+1](https://img.qammunity.org/2020/formulas/mathematics/college/u4ifdh79ydfj06ia3qr8l2qpxkb2ucm5ct.png)
Remainder is 1.
Which means, GCD(17,16)=1
Using back substitution we get,
![1=17-16(1)](https://img.qammunity.org/2020/formulas/mathematics/college/kyg40s3iq9gu083debw8nu8lcu2knu3dtt.png)
![\Rightarrow 16(-1)=1+17(-1)](https://img.qammunity.org/2020/formulas/mathematics/college/ix818upj2nfljwsy8dq9f8asxzv5kxuwtk.png)
![\Rightarrow 16(-1)=1(\mod 17)](https://img.qammunity.org/2020/formulas/mathematics/college/q1l4rr5m4cvfboxysier2fi895g2euerdd.png)
i.e. -1 is the inverse of 16 modulo 17.
On comparing with
![16x=1(mod 17)](https://img.qammunity.org/2020/formulas/mathematics/college/br3gt6upxs6nuhn60z09eyqmusemuxka1s.png)
The value of x=-1.