Answer:
![\vec{s(t)}=(1)/(2)t^2\hat{i}-(2t+1)\hat{j}+((1)/(3)t^3+1)\hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/lc2wn4p5dl6xy3bnu18adqgxoi0pulcvjv.png)
Explanation:
We are given that velocity vector of a particle
![\vec{v(t)}=t\hat{i}-2\hat{j}+t^2\hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/4xj6ok87645lbkc6vkc9roogvwbtnophl6.png)
When t=0 then the particle is at the point (0,-1,1).
We have to find the position of particle at time t.
We know that
Velocity =
![(Displacement )/(time)=(ds)/(dt)](https://img.qammunity.org/2020/formulas/mathematics/college/dtjt9adrg6ja63db4465xpm1ss1fpv770o.png)
Therefore,
![\vec{v}=\frac{\vec{ds}}{dt}](https://img.qammunity.org/2020/formulas/mathematics/college/xxy7c0yltqivt1ctjkcp53m1a5z7vv1mky.png)
![\int{ds}=\int (t\hat{i}-2\hat{j}+t^2\hat{k})dt](https://img.qammunity.org/2020/formulas/mathematics/college/810qrighk8leh6teaurv9nsdwxxf3p25ay.png)
Integrate on both sides then we get
![\vec{s(t)}=(1)/(2)t^2\hat{i}-2t\hat{j}+(1)/(3)t^3\hat{k}+C](https://img.qammunity.org/2020/formulas/mathematics/college/7760bod3doizx3ehp30mebm8weh82mr2xd.png)
![\int x^n dx=(x^(n+1))/(n+1)+C](https://img.qammunity.org/2020/formulas/mathematics/college/jsr1v1293er7txv5gjgrchlo1j0uqbz1is.png)
Substitute the value of point at time t=0 then we get
C=
![-\hat{j}+\hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/oruzswfqbaygyboovz2o3e1fe7ktpisphu.png)
Substitute the value of C then we get
![\vec{s(t)}=(1)/(2)t^2\hat{i}-2t\hat{j}+(1)/(3)t^3\hat{k}-\hat{j}+\hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/zf3rjij4qaduz23xm7m6fo845f777m3ny6.png)
Therefore, the position of particle at time t
![\vec{s(t)}=(1)/(2)t^2\hat{i}-(2t+1)\hat{j}+((1)/(3)t^3+1)\hat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/lc2wn4p5dl6xy3bnu18adqgxoi0pulcvjv.png)