Answer:
Uncertainty in position of the bullet is
![\Delta x=1.07* 10^(-33)\ m](https://img.qammunity.org/2020/formulas/physics/college/ojt9dw04rwh688xs7hfjmosjo0fqgln6h4.png)
Step-by-step explanation:
It is given that,
Mass of the bullet, m = 35 g = 0.035 kg
Velocity of bullet, v = 709 m/s
The uncertainty in momentum is 0.20%. The momentum of the bullet is given by :
![p=mv](https://img.qammunity.org/2020/formulas/physics/middle-school/lldmrpmkc3i68kifbfb2c4hi3vblitcsch.png)
![p=0.035* 709=24.81\ kg-m/s](https://img.qammunity.org/2020/formulas/physics/college/5y7g5fe25tqt6vp7fwb1vwyo4jjlkh84ao.png)
Uncertainty in momentum is,
![\Delta p=0.2\%\ of\ 24.81](https://img.qammunity.org/2020/formulas/physics/college/1c4k6b4003cio6pd8krjge90ez1qkz33pl.png)
![\Delta p=0.049](https://img.qammunity.org/2020/formulas/physics/college/g58mrfeq30jqlz04w1ijifla9nnstpjw7d.png)
We need to find the uncertainty in position. It can be calculated using Heisenberg uncertainty principal as :
![\Delta p.\Delta x\geq (h)/(4\pi)](https://img.qammunity.org/2020/formulas/physics/college/7c0u6nx22jxhxyg7thah1rug2ya7ns9aee.png)
![\Delta x=(h)/(4\pi \Delta p)](https://img.qammunity.org/2020/formulas/physics/college/mgs17wzduoidsnl8qfs18l93kzznrihaqq.png)
![\Delta x=(6.62* 10^(-34))/(4\pi * 0.049)](https://img.qammunity.org/2020/formulas/physics/college/tao652xb2cenl8znbx0psp9j7m4gq5fi3b.png)
![\Delta x=1.07* 10^(-33)\ m](https://img.qammunity.org/2020/formulas/physics/college/ojt9dw04rwh688xs7hfjmosjo0fqgln6h4.png)
Hence, this is the required solution.