Answer:
The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.
Step-by-step explanation:
Given that,
Energy E = 2 eV
Barrier V₀= 5.0 eV
Width = 1.00 nm
We need to calculate the value of
![\beta](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ifxhqjas18460gou6t6tvzd0b2mntp5172.png)
Using formula of
![\beta](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ifxhqjas18460gou6t6tvzd0b2mntp5172.png)
![\beta=\sqrt{(2m)/((h)/(2\pi))(v_(0)-E)}](https://img.qammunity.org/2020/formulas/physics/college/sw1eh9ymk0t8v0570jirfdpuobwafo2drr.png)
Put the value into the formula
![\beta = \sqrt{(2*9.1*10^(-31))/((1.055*10^(-34))^2)(5.0-2)*1.6*10^(-19)}](https://img.qammunity.org/2020/formulas/physics/college/y1d0fhhw40z9bthzh04so4jr9h8etzuzbh.png)
![\beta=8.86*10^(9)](https://img.qammunity.org/2020/formulas/physics/college/vzgm7t8e895fqklzlvwuv5k2u9d9mr1rth.png)
(a). We need to calculate the tunnel probability for width 0.5 nm
Using formula of tunnel barrier
![T=(16E(V_(0)-E))/(V_(0)^2)e^(-2\beta a)](https://img.qammunity.org/2020/formulas/physics/college/1q7uacvdwftlf69of164dp4zwfm4qylauh.png)
Put the value into the formula
![T=(16* 2(5.0-2.0))/(5.0^2)e^{-2*8.86*10^(9)*0.5*10^(-9)}](https://img.qammunity.org/2020/formulas/physics/college/d2odjr5ii8c82szgaofvsln0bq3cbg5b9u.png)
![T=5.45*10^(-4)](https://img.qammunity.org/2020/formulas/physics/college/4hzkexg0nrt9uto5wm4x1w55gavlonjumb.png)
(b). We need to calculate the tunnel probability for width 1.00 nm
![T=(16* 2(5.0-2.0))/(5.0^2)e^{-2*8.86*10^(9)*1.00*10^(-9)}](https://img.qammunity.org/2020/formulas/physics/college/5xc7cdciymtq7y9mavcsel5bstvsnym46z.png)
![T=7.74*10^(-8)](https://img.qammunity.org/2020/formulas/physics/college/n9szdbl3dnzx97we9vj746bpnvacsqez5f.png)
Hence, The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.