Answer:
a) Factor of safety ≤ 1.689
b) Factor of safety ≤ 1.944
Step-by-step explanation:
Given data:
Yield strength,
![S_(yr)=S_(ye)=170\ \textup{kpsi}](https://img.qammunity.org/2020/formulas/physics/college/kqjqgjqwnl226hfpyttdno2wsnmf7y15pm.png)
True strain factor = 0.55
![\sigma_x=30\ \textup{kpsi}](https://img.qammunity.org/2020/formulas/physics/college/bt9ut8u8dh0upzhdjaqmgccv044yfiedfv.png)
![\sigma_y=-15\ \textup{kpsi}](https://img.qammunity.org/2020/formulas/physics/college/1jbtbg4ffm7me999tdmpz5jmj3ssp1ea59.png)
![\tau_(xy)=-45\ \textup{kpsi}](https://img.qammunity.org/2020/formulas/physics/college/jgylvaqdviacnwor1ewb6esux80rrkagpn.png)
Now, principle stress is given as:
![\sigma_1,\sigma_2 = (\sigma_x+\sigma_y)/(2)\pm\sqrt{((\sigma_x-\sigma_y)/(2))^2+\tau_(xy)^2](https://img.qammunity.org/2020/formulas/physics/college/rmxx032rdrl3glxlf1cf372ce319npmry8.png)
on substituting the values we get
![\sigma_1,\sigma_2 = (30-15)/(2)\pm\sqrt{((30-(-15))/(2))^2+(-45)^2](https://img.qammunity.org/2020/formulas/physics/college/yvv48xlrujskcc3hu8ijh64kqwpg1zqpa8.png)
![\sigma_1,\sigma_2 =7.5\pm50.312](https://img.qammunity.org/2020/formulas/physics/college/ed6ufu80kd3ffowx4rzuw3hbc5aam8klj9.png)
or
![\sigma_1 =7.5+50.312=57.812\ \textup{kpsi}](https://img.qammunity.org/2020/formulas/physics/college/xm2pi88npl9ba9o5fz3mu9x3mk6h6auhwr.png)
and
![\sigma_2 =7.5-50.312=-42.81\ \textup{kpsi}](https://img.qammunity.org/2020/formulas/physics/college/98lgezjbgr0f4f3hhiei3l1h31r4tcm4ih.png)
a) By maximum shear stress theory
we have
![\sigma_1-\sigma_2\leqslant \frac{\textup{Yield\ strength}}{\textup{Factor\ of\ safety}}](https://img.qammunity.org/2020/formulas/physics/college/b7bxox34nczwclm6r5wz6h9zrfshxrwsjk.png)
on substituting the values, we get
![57.812-(-42.81)\leqslant\frac{170}{\textup{Factor\ of\ safety}}](https://img.qammunity.org/2020/formulas/physics/college/gyyla4qgw81up7l3vfjymbx925z85o6zrj.png)
or
Factor of safety ≤ 1.689
b) By the distortion energy theory
![(1)/(2)[(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2]\leqslant\frac{S_(yr)}{\textup{Factor\ of\ safety}}](https://img.qammunity.org/2020/formulas/physics/college/1ag0dsbg25ghifu7e1fjm4qs50kt3ri40v.png)
since no force is acting in the z- direction, thus
![\sigma_3 = 0](https://img.qammunity.org/2020/formulas/physics/college/ztvvk9qmc47e4atnw1p6ul22858eeyuxjl.png)
on substituting the values, we get
![(1)/(2)[(30-(-15))^2+(-15-0)^2+(0-30)^2]\leqslant\frac{170}{\textup{Factor\ of\ safety}}](https://img.qammunity.org/2020/formulas/physics/college/4yukmxgaa98ujogpi3d1mzqqgfjfn1s0hp.png)
or
Factor of safety ≤ 1.944