Answer:
![P=5.6*10^(6) Pa](https://img.qammunity.org/2020/formulas/chemistry/college/notru09o0k68ymmh1bfavp4lwz9ge3folv.png)
Step-by-step explanation:
Consider that, as the system is adiabatic,
where U1 and U2 are the internal energies before the process and after that respectively.
Consider that:
, and that the internal energy of the first state is the sum of the internal energy of each tank.
So,
![H_(1)-P_(1)V_(1)=H_(2)-P_(2)V_(2)\\H_(1)^(A) -P_(1)^(A)V_(1)^(A)+H_(1)^(B) -P_(1)^(B)V_(1)^(B)=H_(2)-P_(2)V_(2)](https://img.qammunity.org/2020/formulas/chemistry/college/pqof2g59sqpgj3jr3i2hurzq24uf766lk9.png)
Where A y B are the tanks. The enthalpy for an ideal gas is only function of the temperature, as the internal energy is too; so it is possible to assume:
![H_(1)=H_(2)\\H_(1)^(A)+H_(1)^(B) =H_(2)](https://img.qammunity.org/2020/formulas/chemistry/college/9pq31zipsvqaarfv5d0edqckqwk7v6mbul.png)
So,
![P_(1)^(A)V_(1)^(A)+P_(1)^(B)V_(1)^(B)=P_(2)V_(2)](https://img.qammunity.org/2020/formulas/chemistry/college/v8l7uv64xra4u1sev3t7lr0juxwpfqn10h.png)
Isolating
,
![P_(2)=(P_(1)^(A)V_(1)^(A)+P_(1)^(B)V_(1)^(B))/(V_(2))](https://img.qammunity.org/2020/formulas/chemistry/college/x5lp5uppmcgre2vihuzxiptd0j36xm0gk6.png)
![V_(2)=V_(1)^(A)+V_(1)^(B)=0.25m^(3)](https://img.qammunity.org/2020/formulas/chemistry/college/2tgrcspvx7dfnwi0gtgckfzbjw3ejhg8m7.png)
So,
![P_(2)=(5000000*0.1+6000000*0.15)/(0.25)=5600000Pa=5.6*10^(6) Pa](https://img.qammunity.org/2020/formulas/chemistry/college/einsavwun1rt7e79gxbjzbx845oz3fej2b.png)