Answer:
L = 46.35 m
Step-by-step explanation:
GIVEN DATA
\dot m = 0.25 kg/s
D = 40 mm
P_1 = 690 kPa
P_2 = 650 kPa
T_1 = 40° = 313 K
head loss equation
![[(P_1)/(\rho) +\alpha (v_1^2)/(2) +gz_1] -[(P_2)/(\rho) +\alpha (v_2^2)/(2) +gz_2] = h_l +h_m](https://img.qammunity.org/2020/formulas/engineering/college/q4p99til9jqgqn08nnjbzwpzg1kjf2t0qk.png)
where
![h_l = ( flv^2)/(2D)](https://img.qammunity.org/2020/formulas/engineering/college/foico0tg28yjysy57b4t4stskqi8trf4l4.png)
![h_m minor loss](https://img.qammunity.org/2020/formulas/engineering/college/e6ksw9od9k6la0xyg35ekvnk3htbm995mu.png)
density is constant
![v_1 = v_2](https://img.qammunity.org/2020/formulas/engineering/college/m19fp5sk0pb1u9i17d4xpdt8wh9svnx3nr.png)
head is same so,
![z_1 = z_2](https://img.qammunity.org/2020/formulas/engineering/college/9ebcbxmlwllft6z0iiq2yb59kytr6nruac.png)
curvature is constant so
![\alpha = constant](https://img.qammunity.org/2020/formulas/engineering/college/uk1lg86mgxw1mmoywb8bdz69wp2clzc0s4.png)
neglecting minor losses
![(P_1)/(\rho) -(P_2)/(\rho) = ( flv^2)/(2D)](https://img.qammunity.org/2020/formulas/engineering/college/n5vzi2feb8ovbhjitbgnqgo2e64u81qwgn.png)
we know
is given as
![= \rho VA](https://img.qammunity.org/2020/formulas/engineering/college/i7mrelwnek1rogtfiojpw1vadlwq72y20f.png)
![\rho =(P_1)/(RT_1)](https://img.qammunity.org/2020/formulas/engineering/college/yx0f3u1n73yo5lmyw1pb1z402862iifynm.png)
![\rho =(690 *10^3)/(287*313) = 7.68 kg/m3](https://img.qammunity.org/2020/formulas/engineering/college/sxmbdtdtqzepjsfoe6lohf4wgbkypcrin3.png)
therefore
![v = (\dot m)/(\rho A)](https://img.qammunity.org/2020/formulas/engineering/college/y0yemytevygmv6vsht54daxvji4h5fh11v.png)
![V =(0.25)/(7.68 (\pi)/(4) *(40*10^(-3))^2)](https://img.qammunity.org/2020/formulas/engineering/college/2i42jfovpak7zo1tg3cjwbqrwk8fwvz9n8.png)
V = 25.90 m/s
![Re = (\rho VD)/(\mu)](https://img.qammunity.org/2020/formulas/engineering/college/zdq8vlyujno9v1k2ml9sgpm61snxjik8ux.png)
for T = 40 Degree,
![\mu = 1.91*10^(-5)](https://img.qammunity.org/2020/formulas/engineering/college/shek5tfnw26qffx1a3ru34cydionc96gmi.png)
![Re =(7.68*25.90*40*10^(-3))/(1.91*10^(-5))](https://img.qammunity.org/2020/formulas/engineering/college/1reyjjlob9pl75yho5blilr1vpapmbk6im.png)
Re = 4.16*10^5 > 2300 therefore turbulent flow
for Re =4.16*10^5 , f = 0.0134
Therefore
![(P_1)/(\rho) -(P_2)/(\rho) = ( flv^2)/(2D)](https://img.qammunity.org/2020/formulas/engineering/college/n5vzi2feb8ovbhjitbgnqgo2e64u81qwgn.png)
![L = ((P_1-P_2) 2D)/(\rho f v^2)](https://img.qammunity.org/2020/formulas/engineering/college/q98c8d5gp6cux4rpz2kwy8s1m92p07m4mn.png)
![L =((690-650)*`10^3* 2*40*10^(-3))/(7.68*0.0134*25.90^2)](https://img.qammunity.org/2020/formulas/engineering/college/42tbfxg6edpxec96ggoetx0mx9fzea09gt.png)
L = 46.35 m