Answer:
Damping ratio
![\zeta =0.0342](https://img.qammunity.org/2020/formulas/engineering/college/wnmcfgo3ex8t1xm32v23v9eswfk9er7y1r.png)
Step-by-step explanation:
Given that
m=4.2 kg,K=85.9 N/m,C=1.3 N.s/m
We need to find damping ratio
We know that critical damping co-efficient
![C_c=2\sqrt {mk}](https://img.qammunity.org/2020/formulas/engineering/college/k9abo4vd5mdy32wxt82wzwjnh6td0qi04f.png)
![C_c=2\sqrt {4.2* 85.9}](https://img.qammunity.org/2020/formulas/engineering/college/fkqmigx0un0kuz9q2x0l2014sykr2k0tvq.png)
N.s/m
Damping ratio(
) is the ratio of damping co-efficient to the critical damping co-efficient
So
![\zeta =(C)/(C_c)](https://img.qammunity.org/2020/formulas/engineering/college/q5cl6dgrymvwms5dcqsu1r7a1dwqtw1ns7.png)
![\zeta =(1.3)/(37.98)](https://img.qammunity.org/2020/formulas/engineering/college/pxhyq9qhjquyrs3kusx5zlaix61bzuoqyi.png)
![\zeta =0.0342](https://img.qammunity.org/2020/formulas/engineering/college/wnmcfgo3ex8t1xm32v23v9eswfk9er7y1r.png)
So damping ratio
![\zeta =0.0342](https://img.qammunity.org/2020/formulas/engineering/college/wnmcfgo3ex8t1xm32v23v9eswfk9er7y1r.png)