Given:
size of scale model = 4(size of pump)
power ratio of pump and scale model = 5:1
Solution:
Let the diameter of scale model and pump be
and
respectively
and head be
and
respectively
Now, power, P is given as a function of head(H) and dischagre(Q)
P =
(1)
From eqn (1):
![P \propto QH](https://img.qammunity.org/2020/formulas/engineering/college/gtgrr93y1jb6o1es6wnbnb8p00y3vcvfq5.png)
and
![QH \propto √(H)D^(2)](https://img.qammunity.org/2020/formulas/engineering/college/e0nxc9orjay0d5tblhypew09c5q9utisbi.png)
So,
![P \propto H^{(3)/(2)} D^(2)](https://img.qammunity.org/2020/formulas/engineering/college/yxz8f81msvk2cw6qheqx35ysjina8vpkgw.png)
Therefore,
=
![\frac{D_(s)^(2) H_(s)^{(3)/(2)}}{D_(p)^(2) H_(p)^{(3)/(2)}}](https://img.qammunity.org/2020/formulas/engineering/college/ouyoedfy137vu38490jacee2yb02l8q25b.png)
=
![\frac{D_(s)^(2) H_(s)^{(3)/(2)}}{D_(p)^(2) H_(p)^{(3)/(2)}}](https://img.qammunity.org/2020/formulas/engineering/college/ouyoedfy137vu38490jacee2yb02l8q25b.png)
=
![\frac{1^(2)* 5^{(3)/(2)}}{4^(2)* 1^{(3)/(2)}}](https://img.qammunity.org/2020/formulas/engineering/college/vf44nniepms15fdtiepeko58f2iw5m274e.png)
=
![(5√(5))/(16)](https://img.qammunity.org/2020/formulas/engineering/college/ffo67mbjirhai31dwbyu9whm12g0nw8jet.png)
=
![{5√(5)}:{16}](https://img.qammunity.org/2020/formulas/engineering/college/bg5ex6dj9nfpkaasqhvcvzkjozpik4rhra.png)