Answer:
The shortest distance from A to C is
![AC=5√(13)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8650oveuhlzk143gyj9krwz32b1cg7xqvh.png)
Explanation:
see the attached figure to better understand the problem
we know that
The shortest distance from A to C is the hypotenuse of the right triangle AYC
Applying the Pythagoras Theorem
![AC^(2)=AY^(2) +YC^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4azewivcj30nehrsa6d843dc2g867otlyj.png)
step 1
Find the length YC (hypotenuse of the right triangle YBC)
Applying the Pythagoras Theorem
![YC^(2)=YB^(2) +BC^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ql2o7xksyxun4ipb2ld1grkoj1ru3ulgq1.png)
substitute the given values
![YC^(2)=6^(2) +15^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/75itvmsd3cxr2pcsp84jptr4kt5hpcuza8.png)
![YC^(2)=261](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vyiq6nrzqiks17gjz2xysymcwqqc2ips8q.png)
![YC=√(261)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/so2mo1aofuvwjeq7zj80v7lqwekadcayda.png)
step 2
Find the shortest distance from A to C
![AC^(2)=AY^(2) +YC^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4azewivcj30nehrsa6d843dc2g867otlyj.png)
substitute the given values
![AC^(2)=8^(2) +√(261)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4mxx89991hm2ohn8z0tibpuzpb0i1kcl7k.png)
![AC^(2)=325](https://img.qammunity.org/2020/formulas/mathematics/middle-school/km5b6lthgs3d20wfsdu1nttk9slk47ho63.png)
![AC=√(325)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ct2qrlf7sqgq4to91htt1j1ggyyvuseyr8.png)
![AC=5√(13)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8650oveuhlzk143gyj9krwz32b1cg7xqvh.png)