Answer:
The value of P(S or T) is 3/4.
Explanation:
It is given that S and T are mutually exclusive events. It means intersection of S and T is 0.
![S\cap T=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ro3ud8n30exvos30g20nm5vrvezwu5sm8v.png)
![P(S\cap T)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6vcks7ooysmfhdh52wmpyuoxcweswh4o36.png)
We need to find the value of P(S or T). It means we have to find the probability of union of S and T.
![P(S\cup T)=P(S)+P(T)-P(S\cap T)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oc1j5a1aawqe5h6i6rbqsdracx8h00jtzt.png)
Substitute the given values in the above formula.
![P(S\cup T)=(1)/(3)+(5)/(12)-(0)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n3359sojtgykl51qxoaogrpt2umsees4us.png)
![P(S\cup T)=(4+5)/(12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qihma3zdsvhpzrl2180sw15fchjtjxjy2e.png)
![P(S\cup T)=(9)/(12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3zzgvjos2lsuxdfuksudfqukzfqxjwj81y.png)
![P(S\cup T)=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ve2tvjl4odcr2d2uzdwm0rvphf5ltskls.png)
Therefore the value of P(S or T) is 3/4.