162k views
1 vote
D(-3,5)

What is the perimeter of square ABCD?
A(3,4)
+
37 units
cb
4/37 units
28 units
37 units
.
-54-3 -2 -
2
3
4
5
C(-4-1)
B(2,-2)

D(-3,5) What is the perimeter of square ABCD? A(3,4) + 37 units cb 4/37 units 28 units-example-1
User BernieSF
by
5.8k points

1 Answer

3 votes

Answer:


4√(37) units is the perimeter of square ABCD.

Explanation:

Coordinates of square ABCD:

A = (3,4), B = (2,-2), C = (-4-1) , D = (-3,5)

Distance formula:
(x_1,y_1),(x_2,y_2)


d=√((x_2-x_1)^2+(y_2-y_1)^2)

Distance of AB: A = (3,4), B = (2,-2)


AB=√((2-3)^2+(-2-4)^2)


AB=√((-1)^2+(-6)^2)=√(37) units

Given that the ABCD is square, then:

AB = BC = CD = DA

Perimeter of the square ABC = AB +BC + CD + DA


AB+ AB+ AB+ AB= 4AB=4√(37) units


4√(37) units is the perimeter of square ABCD.

User Alfredo Morales
by
5.8k points