Step-by-step explanation:
sin² A sec² B + tan² B cos² A
A good first step is to write everything in terms of sine and cosine.
sin² A / cos² B + sin² B cos² A / cos² B
The fractions have the same denominator, so combine into one:
(sin² A + sin² B cos² A) / cos² B
Using Pythagorean identity, we can rewrite sin² B as 1 − cos² B:
(sin² A + (1 − cos² B) cos² A) / cos² B
Distribute:
(sin² A + cos² A − cos² B cos² A) / cos² B
Pythagorean identity:
(1 − cos² B cos² A) / cos² B
Now divide into two fractions again:
1 / cos² B − cos² B cos² A / cos² B
Simplify:
sec² B − cos² A
Using Pythagorean identity again:
(tan² B + 1) − (1 − sin² A)
tan² B + 1 − 1 + sin² A
tan² B + sin² A