Answer:
The correct option is D.
Explanation:
Consider the provided expression.
![(1)/(2x^2-4x)-(2)/(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qi8t44hbw956a8g5fegj0rmawq95yk7l0l.png)
Now take the LCM of the denominator and solve the above expression as shown:
![(x-2(2x^2-4x))/(x(2x^2-4x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/85a818qv5zb31jt48ql5s6gzpqimwc74lr.png)
![(x-4x^2+8x)/(x(2x^2-4x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/seyl0y60w9tu3jr4oqvldtlfyjcnpyl77h.png)
![(9x-4x^2)/(x(2x^2-4x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m1xgac9mx9o1wa94jr208jcml530wqs3ju.png)
Cancel out the x as it is common in numerator and denominator.
![(9-4x)/(2x^2-4x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mwh4ti366upyqhmmevqv3mgji7nsrna3tc.png)
![(-4x+9)/(2x(x-2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nqdik8yjsnfz2syr0oricvcvbnzgoehij1.png)
Hence, the correct option is D.