Answer : The partial pressure of
is, 67.009 atm
Solution : Given,
Partial pressure of
at equilibrium = 30.6 atm
Partial pressure of
at equilibrium = 13.9 atm
Equilibrium constant =
![K_p=0.345](https://img.qammunity.org/2020/formulas/physics/college/2fsumrlhbwppktwjv89zms1wu73cydyl1e.png)
The given balanced equilibrium reaction is,
![2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)](https://img.qammunity.org/2020/formulas/chemistry/high-school/2xo14hx3wdu35u6zvj5r1w2dryztuo2grp.png)
The expression of
will be,
![K_p=((p_(SO_3))^2)/((p_(SO_2))^2* (p_(O_2)))](https://img.qammunity.org/2020/formulas/physics/college/i1qob8jba5xn7iqyvreostfmt7wyyuu5t9.png)
Now put all the values of partial pressure, we get
![0.345=((p_(SO_3))^2)/((30.6)^2* (13.9))](https://img.qammunity.org/2020/formulas/physics/college/wy5wu0p2ue8mmo1axj9gk4thgtd87rj3yr.png)
![p_(SO_3)=67.009atm](https://img.qammunity.org/2020/formulas/physics/college/k33fy8c9qnvd4dc1jxhyd2sjor50kp50va.png)
Therefore, the partial pressure of
is, 67.009 atm