Answer:
The height of the density function is
![(1)/(22)](https://img.qammunity.org/2020/formulas/mathematics/college/x81phuuj0ldepj9qe1haiemf1edxcjtrx0.png)
Explanation:
Given : A random variable X follows the continuous uniform distribution with a lower bound of −4 and an upper bound of 18.
To find : What is the height of the density function f(x)?
Solution :
According to question,
The height of the density function is given by,
![f(X)=(1)/(b-a)](https://img.qammunity.org/2020/formulas/mathematics/college/3u4cf7m7l00132lqytx89rpmby68v2r8a7.png)
Where, a is the lower bound a=-4
b is the upper bound b=18
Substitute the value in the formula,
![f(X)=(1)/(18-(-4))](https://img.qammunity.org/2020/formulas/mathematics/college/4a6m1b27ng39u9umdfpvfd6we1ocfqeoro.png)
![f(X)=(1)/(18+4)](https://img.qammunity.org/2020/formulas/mathematics/college/hcv6641lcf1n3ztwgw017ut8x96tvhaldn.png)
![f(X)=(1)/(22)](https://img.qammunity.org/2020/formulas/mathematics/college/fsgo2qs88e5i0hbz3qpkkobretu1y03vo3.png)
Therefore, The height of the density function is
![(1)/(22)](https://img.qammunity.org/2020/formulas/mathematics/college/x81phuuj0ldepj9qe1haiemf1edxcjtrx0.png)