Answer: option c.
Explanation:
To find AB you can use this trigonometric identity:
![tan\alpha=(opposite)/(adjacent)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t47p8rrqya3ovhfwatsel4hnpavm4byzpb.png)
In this case:
![\alpha=\angle A=48.8\°\\opposite=BC=1.6in\\adjacent=AC](https://img.qammunity.org/2020/formulas/mathematics/high-school/5nbfn8dxy5pxqrsxxe205clc8lxxyqx1gb.png)
Substituting values and solving for AC, we get:
![tan(48.8\°)=(1.6in)/(AC)\\\\AC=(1.6in)/(tan(48.8\°))\\\\AC=1.4in](https://img.qammunity.org/2020/formulas/mathematics/high-school/a5i511jr1ohj6qvv7cz0e5qrdvnj0vdyfi.png)
To find AB you can use the Pythagorean Theorem:
![c^2=a^2+b^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xsm8kchig3pfblxfo10xa15jy2ias2waqf.png)
Where "c" is the hypotenuse and "a" and "b" are the legs of the triangle.
In this case:
![c=AB\\b=AC=1.4in\\\\a=BC=1.6in](https://img.qammunity.org/2020/formulas/mathematics/high-school/t7gjpjwy46br3mopp0p121rcci82e6kkg2.png)
Substituting values and solving for AB, we get:
![AB^2=(1.6in)^2+(1.4in)^2\\\\AB=√((1.6in)^2+(1.4in)^2)\\\\AB=2.1in](https://img.qammunity.org/2020/formulas/mathematics/high-school/h3oaqy5sigskybfjkyfrqxvv2rcjnwcd3l.png)
Since the sum of the interior angles of a triangle is 180 degrees, we know that ∠B is:
![\angle B=180\°-\angle A-\angle C\\\\\angle B=180\°-48.8\°-90\°\\\\\angle B=41.2\°](https://img.qammunity.org/2020/formulas/mathematics/high-school/8exn8kzyp10ewbmfsbxomx9zmvf1joked5.png)