Given:
Rate of increase in ripple radius,
= 2 ft/sec
Solution:
Area of circle =
![\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jbq7l9lw0tfwhmngy40fg4vq26fc4vapd0.png)
Differentiating w.r.t 'r', we get:
= 2
Rate of change in area is given by:
=
.
![(dr)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/j9f9f5idorh07ui3x8hsv08pn3fi53679g.png)
(by chain rule)
= 2
.
![(dr)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/j9f9f5idorh07ui3x8hsv08pn3fi53679g.png)
when radius, r = 5ft
= 2
. 2 = 20
![\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hvs09vob5j95u9hspf0ge6sceeo00vgyv4.png)
Now,
when r = 10 ft
= 2
.
![(dr)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/j9f9f5idorh07ui3x8hsv08pn3fi53679g.png)
= 2
. 2 = 40