Answer:

Explanation:
In Rationalize the denominator we multiply both numerator and denominator by the conjugate of denominator.
In Conjugate we change the sign of middle operator.
Example: Congugate of (a + b) = a - b
Now Solving the given expression,
![(2√(x) - 3√(y))/(√(x) + √(y)) = (2√(x) - 3√(y))/(√(x) + √(y))* (√(x) - √(y))/(√(x) - √(y))\\\\\Rightarrow \frac{(2√(x) - 3√(y))(√(x) - √(y))}{( √(x) + √(y)){(√(x) - √(y)})}\ \ \ \ \ \ \ \ \ \ \ [\because (a-b)(a+b)=(a^(2) +b^(2))]\\\Rightarrow (2x-2√(xy)-3√(xy)+3y)/(x-y)\\\\ \Rightarrow (2x-5√(xy)+3y)/(x-y)\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n56xm3xlq3gq1uq6j1har1p76amdyzg0q8.png)