138k views
4 votes
Rationalize the denominator and simplify.

Rationalize the denominator and simplify.-example-1
User Bsyk
by
8.4k points

2 Answers

4 votes

let's use the conjugate of the denominator and multiply top and bottom by it, recall the conjugate of a binomial is simply the same binomial with a different sign in between.


\bf \cfrac{2√(x)-3√(y)}{√(x)+√(y)}\cdot \cfrac{√(x)-√(y)}{√(x)-√(y)}\implies \cfrac{2√(x)√(x)-2√(x)√(y)~~-~~3√(x)√(y)+3√(y)√(y)}{\underset{\textit{difference of squares}}{(√(x)+√(y))(√(x)-√(y))}} \\\\\\ \cfrac{2√(x^2)-2√(xy)-3√(xy)+3√(y^2)}{(√(x))^2-(√(y))^2}\implies \cfrac{2x-5√(xy)+3y}{x-y}

User Otavio Ferreira
by
7.7k points
0 votes

Answer:


(2x-5√(xy)+3y)/(x-y)\\

Explanation:

In Rationalize the denominator we multiply both numerator and denominator by the conjugate of denominator.

In Conjugate we change the sign of middle operator.

Example: Congugate of (a + b) = a - b

Now Solving the given expression,


(2√(x) - 3√(y))/(√(x) + √(y)) = (2√(x) - 3√(y))/(√(x) + √(y))* (√(x) - √(y))/(√(x) - √(y))\\\\\Rightarrow \frac{(2√(x) - 3√(y))(√(x) - √(y))}{( √(x) + √(y)){(√(x) - √(y)})}\ \ \ \ \ \ \ \ \ \ \ [\because (a-b)(a+b)=(a^(2) +b^(2))]\\\Rightarrow (2x-2√(xy)-3√(xy)+3y)/(x-y)\\\\ \Rightarrow (2x-5√(xy)+3y)/(x-y)\\

User Emre Bener
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories