Answer : The total pressure in the container at equilibrium is, 0.4667 atm
Solution : Given,
Initial pressure of
= 0.259 atm
Equilibrium constant,
= 0.841
The given equilibrium reaction is,
![H_2S(g)\rightleftharpoons H_2(g)+S(g)](https://img.qammunity.org/2020/formulas/physics/college/fcxa89lyrykdjn7aohkjze0ufggfz8baq2.png)
Initially 0.259 0 0
At equilibrium (0.259 - x) x x
Let the partial pressure of
and
will be, 'x'
The expression of
will be,
![K_p=((p_(H_2))(p_(S)))/(p_(H_2S))](https://img.qammunity.org/2020/formulas/physics/college/8jliz69kb7przplixg9mwhpqgz4dadp0tv.png)
Now put all the values of partial pressure, we get
![0.841=((x)* (x))/((0.259-x))](https://img.qammunity.org/2020/formulas/physics/college/kxif3rnwxmii5poboaquyr1k2iudxhprlb.png)
By solving the term x, we get
![x=0.2077atm](https://img.qammunity.org/2020/formulas/physics/college/ywli92n5j3os2o71j6qa83b0jqf37e8d4z.png)
The partial pressure of
and
= x = 0.2077 atm
Total pressure in the container at equilibrium =
![0.259-x+x+x=0.259+x=0.259+0.2077=0.4667atm](https://img.qammunity.org/2020/formulas/physics/college/96hduqcodkfxvn0yhe027c0egg8mjh9m3s.png)
Therefore, the total pressure in the container at equilibrium is, 0.4667 atm