Final answer:
A person can buy up to 19 cookies or 9 hot dogs with less than $15.
Step-by-step explanation:
In order to determine how many hot dogs and cookies a person can buy with less than $15, we need to set up an inequality using the cost of the hot dogs and cookies.
Let x represent the number of hot dogs and y represent the number of cookies.
The inequality can be written as:
1.50x + 0.75y < 15
To find the different combinations of hot dogs and cookies, we can create a table of values. For example:
If x = 0, then 0.75y < 15 and y < 20. In this case, a person can buy up to 19 cookies.
If y = 0, then 1.50x < 15 and x < 10. In this case, a person can buy up to 9 hot dogs.
Other possible combinations include buying 18 cookies and 8 hot dogs, or 17 cookies and 7 hot dogs, etc.
Therefore, a person can buy up to 19 cookies or 9 hot dogs with less than $15.