Answer:
840.02 square inches ( approx )
Explanation:
Suppose x represents the side of each square, cut from the corners of the sheet,
Since, the dimension of the sheet are,
31 in × 17 in,
Thus, the dimension of the rectangular box must are,
(31-2x) in × (17-2x) in × x in
Hence, the volume of the box would be,
V = (31-2x) × (17-2x) × x
![=(31* 17 +31* -2x -2x* 17 -2x* -2x)x](https://img.qammunity.org/2020/formulas/mathematics/college/egahht6jthmmi55twyrp4wg0xoesdtcza6.png)
![=(527 -62x-34x+4x^2)x](https://img.qammunity.org/2020/formulas/mathematics/college/jbtclkkp1cwsblszkpt90mkx9x0an2mmt6.png)
![\implies V=4x^3-96x^2 +527x](https://img.qammunity.org/2020/formulas/mathematics/college/bopqz20jbfknkj9sy6uxk7o863sa9ukzcn.png)
Differentiating with respect to x,
![(dV)/(dx)=12x^2-192x+527](https://img.qammunity.org/2020/formulas/mathematics/college/zn88gofaj6mgf0crygett6xddcj48vo2sp.png)
Again differentiating with respect to x,
![(d^2V)/(dx^2)=24x-192](https://img.qammunity.org/2020/formulas/mathematics/college/lp9uu58nzsvh83y9pvbtcw77or7zhm54ko.png)
For maxima or minima,
![(dV)/(dx)=0](https://img.qammunity.org/2020/formulas/mathematics/college/qly2p1dtay6z46a5bu2ta1efzjc2uuqzo5.png)
![\implies 12x^2-192x+527=0](https://img.qammunity.org/2020/formulas/mathematics/college/5pje31e58hbw12gikn3h3z4w8zjvu760o6.png)
By the quadratic formula,
![x=(192 \pm √(192^2 -4* 12* 527))/(24)](https://img.qammunity.org/2020/formulas/mathematics/college/fc23xoqed2zqzlei4jre2gf1lvrixbnxdp.png)
![x\approx 8\pm 4.4814](https://img.qammunity.org/2020/formulas/mathematics/college/vto9llqwd4kisv0e5xampo5chz7931lmud.png)
![\implies x\approx 12.48\text{ or }x\approx 3.52](https://img.qammunity.org/2020/formulas/mathematics/college/ekwsppjpg81oqogzfz9j2n99mhwtont1vj.png)
Since, at x = 12.48,
= Positive,
While at x = 3.52,
= Negative,
Hence, for x = 3.52 the volume of the rectangle is maximum,
Therefore, the maximum volume would be,
V(3.5) = (31-7.04) × (17-7.04) × 3.52 = 840.018432 ≈ 840.02 square inches