25.1k views
0 votes
What is the following simplified product? Assume x>/= 0

What is the following simplified product? Assume x>/= 0-example-1
User Dkarp
by
5.5k points

2 Answers

2 votes

Answer:

B

Explanation:

edg2021

User Mohammedn
by
4.9k points
3 votes

Answer: second option.

Explanation:

We know that:


\sqrt[n]{a^n}=a


(a^m)(a^n)=a^{(m+n)

Then we can simplify the radicals:


2√(8x^3)(3√(10x^4)-x√(5x^2))=(2√(2^2*2*x^2*x))(3√(10x^4)-x√(5x^2))=\\\\=2*2*x√(2x)=3x^2√(10)-x*x√(5)\\\\=4x√(2x)(3x^2√(10)-x^2√(5))

Since:


(a\sqrt[n]{x})*(b\sqrt[n]{y})=ab\sqrt[n]{xy}

We can apply Distributive property:


4x√(2x)(3x^2√(10)-x^2√(5))\\\\12x^3√(20x)-4x^3√(10x)

Simplifying:


12x^3*2√(5x)-4x^3√(10x)\\\\24x^3√(5x)-4x^3√(10x)

User Kanav
by
4.6k points