Answer:
0.077 to 0.24
Explanation:
![P=(12)/(75)=0.16](https://img.qammunity.org/2020/formulas/mathematics/high-school/itfd2d1uaotbd8grta8aaj1mkdh3569cl6.png)
confidence level =95%=0.95
significance level =1-confidence level =1 -0.95= 0.05
from the z table
standard error of P
![SE=\sqrt{(P* \left ( 1-P \right ))/(n)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/bfsv3j877yxhyhmx3v4s6njrl04fstfnj9.png)
as n=75 given
=0.0423
![E=z_(\alpha )/(2)*\sqrt(P* \left ( 1-P \right ))/(n)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w6mrnly4735ocqw3vqlkkaixfde1s8zd39.png)
=1.96×0.0423=0.0289
now confidence interval is given by (0.16-0.0289 ,0.16+0.0289)
=(0.077,0.24)