Answer:
The correct option is D.
Explanation:
Given: ΔMNO is a right angled triangle with right angle ∠MON, P is midpoint of MN.
To prove:
![OP=(1)/(2)MN](https://img.qammunity.org/2020/formulas/mathematics/middle-school/imjg62exjn7inv99h9amkztpiq6qbgckk8.png)
Since midpoints will be involved, use multiples of _2_ to name the coordinates for M and N.
Let the coordinates for M and N are (0,2m) and (2n,0) receptively.
Midpoint formula:
![Midpoint=((x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/nwxxwi2mir9e3arj0zm8u8mggb0hs4arlz.png)
The coordinates of P are
![Midpoint=((2n+0)/(2),(2m+0)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q259sejmyyi48ekhgna11xxzm7cpeu7ipj.png)
![Midpoint=(n,m)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lqi0h2a64siowtg9p911g6b1axihjucthb.png)
The coordinates of P are (n,m).
Distance formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jq23b7gn8a5hqb5oj8gmcxlbivj810cso4.png)
Using distance formula, the distance between O(0,0) and P(n,m) is
![OP=√((n-0)^2+(m-0)^2)=√(n^2+m^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xzxm883nu2hjzmshypfzlrur71b5mxtnqp.png)
Using distance formula, the distance between M(0,2m) and N(2n,0) is
![MN=√((2n-0)^2+(0-2m)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1qogopzhrbwz8tgma6yyqqr82yhotgq6fh.png)
![MN=√(4n^2+4m^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8c8gfz5wsocshqkzlqrw8894y3l8yfd484.png)
On further simplification we get
![MN=√(4(n^2+m^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zqkmauq220odcqbtyi010xembz0lafahes.png)
![MN=2√((n^2+m^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4unvsdh2iotfejcc3y1352nu9gp2uvjc3c.png)
![MN=2(OP)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8y379w9odpnqskzo4aj1ls8pa0n8hkm6o9.png)
Divide both sides by 2.
![(1)/(2)MN=OP](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qxajs8hzey1ul5ql2clrctw23z74ap02x0.png)
Interchange the sides.
![OP=(1)/(2)MN](https://img.qammunity.org/2020/formulas/mathematics/middle-school/imjg62exjn7inv99h9amkztpiq6qbgckk8.png)
Hence proved.
Therefore, the correct option is D.