15.2k views
2 votes
Solve the matrix equation by using inverse matrices.

[2 -2] * [x] = [-18]
[-1 3] * [y] = [13 ]

1 Answer

0 votes

Answer:

x=-7, y=2

Explanation:

You are given the matrix equation


\left[\begin{array}{cc}2&-2\\-1&3\end{array}\right] \cdot \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}-18\\13\end{array}\right]

Find the inverse matrix for the matrix


\left[\begin{array}{cc}2&-2\\-1&3\end{array}\right]

1. The determinant is


\left|\left[\begin{array}{cc}2&-2\\-1&3\end{array}\right]\right|=2\cdot 3-(-1)\cdot (-2)=6-2=4

2.


a_(11)=2 \Rightarrow A_(11)=3\\ \\a_(12)=-2 \Rightarrow A_(12)=-(-1)=1\\ \\a_(21)=-1 \Rightarrow A_(21)=-(-2)=2\\ \\a_(22)=3 \Rightarrow A_(22)=2

3. Inverse matrix is


(1)/(4)\left[\begin{array}{cc}3&1\\2&2\end{array}\right]^T=(1)/(4)\left[\begin{array}{cc}3&2\\1&2\end{array}\right]

So, the solution of the equation is


\left[\begin{array}{c}x\\y\end{array}\right]=(1)/(4)\left[\begin{array}{cc}3&2\\1&2\end{array}\right]\cdot \left[\begin{array}{c}-18\\13\end{array}\right]=\\ \\=(1)/(4)\left[\begin{array}{cc}3\cdot(-18)+2\cdot 13\\1\cdot (-18)+2\cdot 13\end{array}\right]=(1)/(4)\left[\begin{array}{c}-28\\8\end{array}\right]=\left[\begin{array}{c}-7\\2\end{array}\right]

User Sebcoe
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.