Answer:
![x = 0 , \pi , 2\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/9rvmdl6odssh4cdld3yhu51k8k9dmt7j3i.png)
Explanation:
The given equation is:l
![\tan^(2) (x) \sec^(2) x + 2 \sec^(2) x - \tan^(2) x = 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/5yrk3bohik940f632mf8tt19m51icsh4ff.png)
Add -2 to both sides of the equation to get:
![\tan^(2) (x) \sec^(2) x + 2 \sec^(2) x - \tan^(2) x - 2 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/6qpxa9twaop5mt0oroeibxoj0nernr1u0r.png)
We factor the LHS by grouping.
![\sec^(2) x(\tan^(2) (x) + 2 ) - 1( \tan^(2) x + 2) = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/v768aftjhxt6qnpjtes2ik1t5k5edxrmge.png)
![(\sec^(2) x - 1)(\tan^(2) (x) + 2)= 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/zn4k1wtd7jtkc031u8xnhhnlqm7hfo4rhz.png)
We now apply the zero product property to get:
![(\sec^(2) x - 1) = 0 \: \: or \: \: (\tan^(2) (x) + 2)= 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/6dmye8g71ipm8mr5hshypjmmcb7ok61r70.png)
This implies that:
![\sec^(2) x = 1 \: \: or \: \: \tan^(2) (x) = - 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/yqdgqs3hzu40noegdkd0a9y9zti0vnda28.png)
![\tan^(2) (x) = - 2 \implies \tan(x) = \pm √( - 2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ahfsykfknrfvkq5d9zlxa3tmjk6hty978t.png)
This factor is never equal to zero and has no real solution.
![\sec^(2) x = 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/99rwdqpotvm49g07mtuou299r00aodmbat.png)
This implies that:
![\sec \: x= \pm√(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/uj8q3dgzyltpyjxqax9e59f35v1eh3xwtm.png)
![\sec(x) = \pm - 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/ddhxqljtky9391kn0emcr6jsft7gvfd0ht.png)
Recall that
![(1)/( \sec(x) ) = \cos(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/goy5zlwq7mhgnvq5am5khvl0kiuyzc2ypq.png)
We reciprocate both sides to get:
![\cos(x) = \pm1](https://img.qammunity.org/2020/formulas/mathematics/high-school/zt9804hvvj80p8amuy5ce5yx0y0y5npex1.png)
![\cos x = 1 \: or \: \cos x = - 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/v3f3kggtdy2e54vu3rai43s45b6ctufu23.png)
![\cos x = 1 \implies \: x = 0 \: or \: 2\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/b6hski1tv2206f7wy67yr1ny4d173h7ahn.png)
![\cos x = - 1 \implies \: x = \pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/c8o9zuus0qdp4fk2xblvj5ywq577lg3ova.png)
Therefore on the interval
![0 \leqslant x \leqslant 2\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/j8hyqqzs4q6jq1e5yhuzpde51d9pta5vac.png)
![x = 0 , \pi , 2\pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/9rvmdl6odssh4cdld3yhu51k8k9dmt7j3i.png)