Answer:
%
Step-by-step explanation:
The ethanol combustion reaction is:
→
![2CO_(2)+3H_(2)O](https://img.qammunity.org/2020/formulas/chemistry/college/7hzvffrj04hovwrizmzfcrw6jsk9f1dbnx.png)
If we had the amount (x moles) of ethanol, we would calculate the oxygen moles required:
![x*1.10(excess)*(3 O_(2)moles )/(etOHmole)](https://img.qammunity.org/2020/formulas/chemistry/college/bfa7yc4tg12wm49dgki5ryt1b8p9tje1vz.png)
Dividing the previous equation by x:
![1.10(excess)*(3 O_(2)moles)/(etOHmole)=3.30(O_(2)moles)/(etOHmole)](https://img.qammunity.org/2020/formulas/chemistry/college/tzs9ff1pr7vjs46r7a5exbqp0nawk0powt.png)
We would need 3.30 oxygen moles per ethanol mole.
Then we apply the composition relation between O2 and N2 in the feed air:
![3.30(O_(2) moles)*(0.79(N_(2) moles))/(0.21(O_(2) moles))=121.414 (N_(2) moles )](https://img.qammunity.org/2020/formulas/chemistry/college/hgzg6ife61tqww7xyvfb046cvjxgunnl56.png)
Then calculate the oxygen moles number leaving the reactor, considering that 0.85 ethanol moles react and the stoichiometry of the reaction:
![3.30(O_(2) moles)-0.85(etOHmoles)*(3(O_(2) moles))/(1(etOHmoles)) =0.75O_(2) moles](https://img.qammunity.org/2020/formulas/chemistry/college/m6duand26dixmpwn1by00yuswie7p8i8ef.png)
Calculate the number of moles of CO2 and water considering the same:
![0.85(etOHmoles)*(3(H_(2)Omoles))/(1(etOHmoles))=2.55(H_(2)Omoles)](https://img.qammunity.org/2020/formulas/chemistry/college/nmgirea0sw3afuieapihsgjjgj2j9ffwle.png)
![0.85(etOHmoles)*(2(CO_(2)moles))/(1(etOHmoles))=1.7(CO_(2)moles)](https://img.qammunity.org/2020/formulas/chemistry/college/x1r0dymxg7pdx0cijfjkjy364bmczx8apk.png)
The total number of moles at the reactor output would be:
![N=1.7(CO2)+12.414(N2)+2.55(H2O)+0.75(O2)\\ N=17.414(Dry-air-moles)](https://img.qammunity.org/2020/formulas/chemistry/college/2564v65yqybdoa1r7i89fhlbreji2yk6oq.png)
So, the oxygen mole fraction would be:
%