89.1k views
4 votes
Suppose θ is an angle in the standard position whose terminal side is in Quadrant IV and cot θ= -6/7 . Find the exact values of the five remaining trigonometric functions of θ. Show your work

User Wuputah
by
8.0k points

1 Answer

3 votes

Answer:


tan(\theta)=-(7)/(6)


sec(\theta)=(√(85) )/(6)


cos(\theta)=(6√(85) )/(85)


sin(\theta)=-(7√(85))/(85)


cosec(\theta)=-(√(85))/(7)

Explanation:


cot (\theta) = -(6)/(7)

a) Since,


tan(\theta) = (1)/(cot(\theta))


tan(\theta) = (1)/(-(6)/(7) )=-(7)/(6)

b) Also, according to the Pythagorean identity:


sec^(2)(\theta)=1+tan^(2)(\theta)

Using the value of tan(
\theta), we get:


sec^(2)(\theta)=1+(-(7)/(6) )^(2)\\\\ sec^(2)(\theta)=(85)/(36)\\\\ sec(\theta)=\pm \sqrt{(85)/(36) } \\\\ sec(\theta)=\pm (√(85) )/(6)

Since, secant is positive in 4th quadrant, we will only consider the positive value. i.e.


sec(\theta)=(√(85) )/(6)

c) Since,


cos(\theta)=(1)/(sec(\theta))

Using the value of secant, we get:


cos(\theta)=(1)/((√(85) )/(6) ) =(6√(85) )/(85)

d) According to Pythagorean identity:


sin^(2)(\theta)=1-cos^(2)(\theta)\\sin(\theta)=\pm \sqrt{1-cos^(2)(\theta)}

Since, sine is negative in fourth quadrant, we will consider the negative value. Using the value of cosine, we get:


sin(\theta)=-\sqrt{1-((6√(85) )/(85))^(2)}=-(7√(85))/(85)

e) Since,


cosec(\theta)=(1)/(sin(\theta))

Using the value of sine, we get:


cosec(\theta)=(1)/(-(7√(85) )/(85))=-(√(85))/(7)

User Trevor Bramble
by
7.6k points